Tuesday, 7 April 2015

Maximizing Overall Ultrasonic Cleaning Effect

Cleaning Chemical selection is extremely important to the overall success of the ultrasonic cleaning process. The selected chemical must be compatible with the base metal being cleaned and have the capability to remove the soils which are present. It must also cavitate well. Most cleaning chemicals can be used satisfactorily with ultrasonics. Some are formulated especially for use with ultrasonics. However, avoid the non-foaming formulations normally used in spray washing applications. Highly wetted formulations are preferred. Many of the new petroleum cleaners, as well as petroleum and terpene based semi-aqueous cleaners, are compatible with ultrasonics. Use of these formulations may require some special equipment considerations, including increased ultrasonic power, to be effective.
fu-fig23
Temperature was mentioned earlier as being important to achieving maximum cavitation. The effectiveness of the cleaning chemical is also related to temperature. Although the cavitation effect is maximized in pure water at a temperature of approximately 160°F, optimum cleaning is often seen at higher or lower temperatures because of the effect that temperature has on the cleaning chemical. As a general rule, each chemical will perform best at its recommended process temperature regardless of the temperature effect on the ultrasonics. For example, although the maximum ultrasonic effect is achieved at 160°F, most highly caustic cleaners are used at a temperatures of 180°F to 190°F because the chemical effect is greatly enhanced by the added temperature. Other cleaners may be found to break down and lose their effectiveness if used at temperatures in excess of as low as 140°F. The best practice is to use a chemical at its maximum recommended temperature not exceeding 190°F
Degassing of cleaning solutions is extremely important in achieving satisfactory cleaning results. Fresh solutions or solutions which have cooled must be degassed before proceeding with cleaning. Degassing is done after the chemical is added and is accomplished by operating the ultrasonic energy and raising the solution temperature. The time required for degassing varies considerably, based on tank capacity and solution temperature, and may range from several minutes for a small tank to an hour or more for a large tank. An unheated tank may require several hours to degas. Degassing is complete when small bubbles of gas cannot be seen rising to the surface of the liquid and a pattern of ripples can be seen.
fu-fig24
The Ultrasonic Power delivered to the cleaning tank must be adequate to cavitate the entire volume of liquid with the workload in place. Watts per gallon is a unit of measure often used to measure the level of ultrasonic power in a cleaning tank. As tank volume is increased, the number of watts per gallon required to achieve the required performance is reduced. Cleaning parts that are very massive or that have a high ratio of surface to mass may require additional ultrasonic power. Excessive power may cause cavitation erosion or “burning” on soft metal parts. If a wide variety of parts is to be cleaned in a single cleaning system, an ultrasonic power control is recommended to allow the power to be adjusted as required for various cleaning needs. Part Exposure to both the cleaning chemical and ultrasonic energy is important for effective cleaning. Care must be taken to ensure that all areas of the parts being cleaned are flooded with the cleaning liquid. Parts baskets and fixtures must be designed to allow penetration of ultrasonic energy and to position the parts to assure that they are exposed to the ultrasonic energy. It is often necessary to individually rack parts in a specific orientation or rotate them during the cleaning process to thoroughly clean internal passages and blind holes.

Conclusion
Properly utilized, ultrasonic energy can contribute significantly to the speed and effectiveness of many immersion cleaning and rinsing processes. It is especially beneficial in increasing the effectiveness of today’s preferred aqueous cleaning chemistries and, in fact, is necessary in many applications to achieve the desired level of cleanliness. With ultrasonics, aqueous chemistries can often give results surpassing those previously achieved using solvents. Ultrasonics is not a technology of the future — it is very much a technology of today.

No comments:

Post a Comment